ALCOHOL SYNTHESIS FROM ${\rm CO_2/H_2}$ ON SILICA-SUPPORTED MOLYBDENUM CATALYSTS

Takashi TATSUMI,* Atsushi MURAMATSU, and Hiro-o TOMINAGA
Department of Synthetic Chemistry, Faculty of Engineering,
The University of Tokyo, Hongo, Tokyo 113

In the hydrogenation of ${\rm CO}_2$ over alkali-promoted Mo/SiO $_2$ catalysts, ${\rm C}_1{^-{\rm C}_5}$ alcohols were selectively obtained at 16 kg/cm 2 and 250 °C.

The study of ${\rm CO}_2$ hydrogenation has been far less extensive than that of CO hydrogenation. Although more hydrogen is necessary to reduce ${\rm CO}_2$, ${\rm CO}_2$ hydrogenation can be of practical interest if it presents some advantages such as activity and selectivity over CO hydrogenation. We recently reported alcohol synthesis from ${\rm CO/H}_2$ catalyzed by alkali-promoted ${\rm Mo/SiO}_2$. Here we report ${\rm CO}_2$ hydrogenation over ${\rm Mo/SiO}_2$ catalysts, producing ${\rm C}_1{\rm -C}_5$ alcohols selectively. A few catalysts have been known to give MeOH in ${\rm CO}_2$ hydrogenation.

The catalysts (10 wt% Mo) were prepared by impregnating ${\rm SiO}_2$ (Fuji Davison ID) with ${\rm (NH}_4)_6{\rm Mo}_7{\rm O}_{24}\cdot {\rm 4H}_2{\rm O}$ and alkali metal salts (alkali metal/Mo atomic ratio = 0.4). The reactions were carried out in a flow reactor at 16 kg/cm² (${\rm CO}_2$ or ${\rm CO/H}_2$ = 1). In Table 1, are shown the activity and selectivity changes of ${\rm CO}_2/{\rm H}_2$ and ${\rm CO/H}_2$ reactions with time over the Mo-KCl/SiO $_2$ catalyst pre-reduced in H $_2$ at 400 °C. Alcohols up to pentanol were formed from ${\rm CO}_2/{\rm H}_2$ in good selectivity defined as alcohols/(alcohols + hydrocarbons). The rate of formation of alcohols and hydrocarbons decreased sharply with time and reached a steady state in ca. 2 h. The C $_2$ + alcohols/MeOH ratio also decreased, while the selectivity for alcohols remained high. On the other hand, the products were mainly hydrocarbons in initial stage of the ${\rm CO/H}_2$ reaction; CO was less active and less selective for alcohol production than ${\rm CO}_2$.

In the CO/H $_2$ reaction over the Mo-KCl/SiO $_2$ catalyst, the alcohol production gradually increased with time, as has already been reported. Table 1 also lists the time dependence of products obtained from ${\rm CO}_2/{\rm H}_2$ over Mo-KCl/SiO $_2$ activated in CO/H $_2$ at 250 °C for 24 h. This indicates that ${\rm CO/H}_2$ treatment brought about remarkable increase in the rate of alcohol formation from ${\rm CO}_2/{\rm H}_2$, compared to that resulting from H $_2$ reduction alone. The important point to note is that the selectivity for alcohols, especially for C $_2$ + alcohols, was much higher than that obtained from the CO/H $_2$ reaction. This transiently increased rate cannot be ascribed to desorption of surface species impelled by ${\rm CO}_2/{\rm H}_2$ introduction; switch from CO/H $_2$ to CO $_2$, H $_2$ or N $_2$ resulted in no increase in alcohol production.

The effect of alkali salts on the activity of the ${\rm CO/H_2}\text{-treated Mo/SiO}_2$ catalysts was also investigated. It is particularly noteworthy that significant amount of alcohols has been formed over the catalyst without alkali addition,

		Time	Time Rate of		Selectivity/C-mol%				C ₂ +alc.	Rate of
Additive Feed		h	alc.+HCb) CH,	C ₂ +	MeOH	EtOH	C ₃ +alc.	MeOH	CO form.b)
	CO ₂ /H ₂ C)	0.25	29.0	21.8	19.7	30.0	19.4	9.1	0.95	213
(₹ 0.90	5.4	17.4	23.9	36.0	11.2	11.4	0.63	143
KC1		1 2.0	3.4	24.6	20.0	41.1	12.4	1.9	0.35	139
	со/н ₂ с)	0.55	7.7	31.7	66.3	1.0	1.0	trace	1.0	
		1.8	6.3	33.4	61.4	3.6	1.4	0.2	0.7	
		24.0	14.0	13.2	24.2	25.2	26.2	11.3	1.5	
	CO ₂ /H ₂ ^{C)} CO/H ₂ ^{C)} CO ₂ /H ₂ ^{d)}	0.6	89.2	2.3	2.7	27.9	34.9	32.2	2.4	237
) 1.0	76.3	2.1	2.4	23.4	30.7	41.4	3.1	213
		2.1	34.1	5.3	4.9	24.8	30.9	34.0	2.6	200
		4.1	13.9	8.0	6.2	28.0	24.3	33.4	2.1	189
None	CO ₂ /H ₂ d) CO ₂ /H ₂ d) CO ₂ /H ₂ d)	2.0	26.4	46.6	28.6	22.1	1.6	1.2	0.1	194
K ₂ CO ₃	CO_2/H_2^{-d}	2.1	19.5	17.6	8.8	31.3	26.2	16.1	1.4	268
KF	CO_2/H_2^{d}	2.0	12.5	4.6	3.6	22.4	39.8	29.5	2.7	113
LiCl	CO ₂ /H ₂ d)	2.0	1.6	22.9	17.9	34.5	20.4	4.4	0.7	49
NaCl	CO_2/H_2^{2d}	2.0	3.4	26.8	21.4	30.2	16.6	5.0	0.7	61

Table 1. Hydrogenation of CO, or CO over silica-supported molybdenum catalystsa)

a) 250 °C, 16 kg/cm 2 , CO $_2$ (CO)/H $_2$ = 1, CO $_2$ (CO) 50 mmol/g-cat·h, Mo 10 wt%, alkali metal/Mo = 0.4. b) x 10 $^{-2}$ C-mmol/g-cat·h. c) After reduction with H $_2$ at 500 °C for 12 h. d) After activation with CO/H $_2$ at 250 °C and 16 kg/cm 2 for 24 h.

which showed negligible activity for alcohol synthesis from ${\rm CO/H_2.}^{1)}$ KCl proved to be the best promoter. The LiCl- and NaCl-promoted catalysts gave only small amount of alcohols, where the ${\rm C_2}+$ alcohols/MeOH ratio was rather small.

In the ${\rm CO_2/H_2}$ reaction over these catalysts, the reverse shift reaction proceeded faster than synthesis of alcohols and hydrocarbons. This result and especially the particular selectivity for formation of ${\rm C_2}+$ products suggest that ${\rm CO_2}$ was first converted to CO, followed by reduction with hydrogen to give the products. Enhanced formation of alcohols from ${\rm CO_2/H_2}$, relative to that from ${\rm CO/H_2}$, might be due to the ability of ${\rm CO_2}$ to oxidize Mo into its intermediate oxidation state, bringing about the increased active sites. The gradual decrease in the rate with time in the case of ${\rm CO_2/H_2}$ reaction seems to be ascribed to the presence of excess of ${\rm CO_2}$. Therefore studies are now being undertaken to pursue the optimum composition using ${\rm CO_2/CO/H_2}$ mixed gas.

References

- 1) T. Tatsumi, A. Muramatsu, and H. Tominaga, Chem. Lett., 1984, 685.
- 2) Y. Ogino and M. Tani, Nippon Kagaku Kaishi, 1975, 1878.
- 3) B. Denise, R. P. A. Sneeden, and C. Hamon, J. Mol. Catal., 17, 359 (1982).
- 4) E. Ramaroson, R. Kieffer, and A. Kienneman, J. Chem. Soc., Chem. Commun., 1982, 645.
- 5) T. Iizuka, M. Kojima, and K. Tanabe, J. Chem. Soc., Chem. Commun., 1983, 638.
- 6) Y. Amenomiya and T. Tagawa, Proc. 8th Int. Cong. Catal., Berlin, II-557 (1984).

(Received February 15, 1985)